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Quantum kinetic equation in the closed-time-path formalism

Jun Koide
Department of Physics, Faculty of Science and Technology, Keio University, Yokohama 223, Japan

~Received 7 April 2000!

A systematic derivation of the quantum kinetic equation is presented in the framework of a closed-time-path
formalism. Introducing a probe, the expectation value of the number operator is calculated as a functional of
the probing source. Then, solving for the source by inverting the relation, the removal of the source leads to the
quantum kinetic equation as the equation of motion for the number, which gives a generalization of the
Boltzmann equation including memory. The inversion formula is used in the course of the derivation. The
calculation is presented up to third order in interaction, and the effect of initial correlations is also considered.

PACS number~s!: 05.30.2d, 05.60.Gg, 11.10.Wx
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I. INTRODUCTION

In this paper, we investigate the quantum kinetic equat
~QKE! using the inversion method briefly reported in Re
@1#. There has been a lot of work on the derivation of t
QKE or the generalized Boltzmann equation, and the m
popular approach is the generalized Kadanoff-Baym~GKB!
formalism @2–4#. In these approaches, starting from t
Dyson equation for a two-point Green function, the equat
for the one-particle density is derived with the aid of t
Kadanoff-Baym ansatz@2# or its generalized version@3,4#.
Although this ansatz successfully leads to the QKE,
range of validity is not known with certainty.

An alternative approach using the Green function is
counterterm method based on the closed-time-path~CTP!
formalism @5–7#, or on the thermofield dynamics@8#. These
approaches have the advantage that they do not requir
ansatz for the expressions of the Green functions. Instea
counterterm is first introduced into the CTP or thermofie
Lagrangian, and an unperturbed propagator is calcula
Then to determine the counterterm, some condition, suc
the cancellation of the on-shell part of the self-energy@5,6,8#
or the cancellation of the pinch singularity@7#, is adopted,
which leads to the generalized Boltzmann equation. Th
conditions, however, are of course not uniquely determin
and ambiguity appears in this step.

In this paper, we use a more direct approach reporte
Ref. @1# which overcomes these shortcomings. It is based
the inversion method@9,10# which is a systematic procedur
to derive the equation of motion~EOM! in the CTP formal-
ism; Coupling the probing source to the order parame
which is chosen to be the number in this paper, the expe
tion value of the order parameter is first calculated under
existence of this external source. After this functional re
tion is inverted perturbatively for the source, the EOM of t
expectation value is obtained when the source is removed
this method, the expectation value of the number is dire
calculated, and the QKE is derived as its EOM which has
form of a non-Markovian Boltzmann equation. Hence no a
satz is made in the course of deriving the EOM, and,
contrast to the counterterm method, there is no ambiguit
determining the EOM since we just remove the source a
the inversion.
PRE 621063-651X/2000/62~5!/5953~14!/$15.00
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In addition to the calculation in Ref.@1#, where only the
next-to-leading order correction~second order in interaction!
was considered, we proceed to a calculation up to third or
in interaction, and the inclusion of an initial correlation e
fect is also discussed. For the higher-order correction, so
new terms appear including the contribution of three-bo
collision. The effect of the initial correlation is considered b
the usual method; extending the time-path to include ima
nary time @11–13,4#, and new initial correlation terms ar
found in addition to the terms derived in other works.

The paper is organized as follows. After a brief descr
tion of the inversion method in Sec. II B, we apply it to th
case of number operator in Sec. III. As discussed in Ref.@1#,
the method is not naively applicable to the number opera
but this problem is solved by introducing a more efficie
probing source for handling the number. Our choice of
probe is dictated by the structure of the dissipative coun
term @5#, which is summarized in Appendix A. In Appendi
B, another choice of the probe source is discussed.
higher-order correction is discussed in Sec. III D, and ene
conservation with the obtained QKE is proved in Sec. III
Then, in Sec. IV, the initial correlation effect on the QKE
calculated, and the stationarity of the initial equilibrium ca
is confirmed. Section V is devoted to discussions.

II. DERIVATION OF EOM IN CTP FORMALISM—
INVERSION METHOD

Let us briefly describe the inversion method@9,10#. It is a
systematic procedure to derive the EOM of the expecta
value of an arbitrary operator, sayQ(ŵ), which is a function
of the dynamical variableŵ of the system. Introducing a
probing external sourceJ, we first derive the expectation
value Q(t)5^Q„ŵ(t)…& as a functional of the sourc
J:Q(t)5 f @ t;J#. Then, solving this inversely to expressJ as
a functional ofQ, J(t)5g@ t;Q#, we remove the sourceJ.
The resultant equationg@ t;Q#50 determines the time de
pendence ofQ, i.e., it gives the EOM.

A. CTP formalism

In the first step of calculating the expectation value,
utilize the CTP formalism@14,15#. In the CTP formalism, the
5953 ©2000 The American Physical Society
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5954 PRE 62JUN KOIDE
time dependent source is usually introduced in the follow
way. First, with the HamiltonianĤ of ŵ, the CTP generating
functionalW is defined as

e~ i /\!W@J1 ,J2#

[Tr Te2~ i /\!*
t I

tFdt~Ĥ2J1~ t !Q̂!r̂T̃e~ i /\!*
t I

tFdt„Ĥ2J2~ t !Q̂…

~1!

}E @dw1dw2#^w1Iur̂uw2I&

3e~ i /\!*
t I

tFdt„L~w1!2L~w2!1J1Q~w1!2J2Q~w2!…, ~2!

wherer̂ is the initial distribution, andT and T̃ are the time
ordering and antiordering operators, respectively. The
equality is due to the path-integral representation, wherew1
andw2 are introduced as integral variables along the forw
and backward time branches, respectively. It can be s
from Eq. ~1! that the expectation value of the products ofQ
can be obtained by a functional differentiation ofW with
respect to the sourceJ1 or J2 . The physically sensible situ
ation is realized by settingJ15J25J, since this gives the
unitary time evolution; thereby,J plays the role of physica
external source. Thus the expectation value ofQ̂ at time t
under a physical external sourceJ can be calculated as

Q~ t ![
dW@J1 ,J2#

dJ1~ t ! U
J15J25J

5^Q̂~ t !&J . ~3!

This gives us the expectation valueQ as a functional of
physical probing sourceJ. See, e.g., Refs.@14,15# for more
detailed properties of generating functional.

B. Inversion formulas

In the second step of the inversion method, we solve
lation ~3! inversely to expressJ as a functional ofQ. Then
setting the external sourceJ50, the obtained relation give
the EOM ofQ. Formally, the general expression of the EO
can be written with the Legendre transformation ofW @10#.
But practically, if the aim is to derive the EOM, the proce
of Legendre transformation is unnecessary, and this in
sion can be carried out in the following perturbative fashio

Usually Q as a functional ofJ, we obtain some perturba
tion series

Q~ t !5 f @ t;J#5(
n

lnf n@ t;J#, ~4!

wherel is a small parameter, andf @ t;J# expresses thatf is a
function of t and a functional ofJ. Then if we write the
inverted relation as

J~ t !5g@ t;Q#5(
m

lmgm@ t;Q#, ~5!

we obtain the simple identity
g

st

d
en

-

r-
.

Q~ t !5 f †t;g@Q#‡

5 f 0†t;g0@Q#‡

1lS E ds f0
~1!@ t,s;Q#g1@s;Q#1 f 1†t;g0@Q#‡D

1l2S E ds f0
~1!@ t,s;Q#g2@s;Q#

1 1
2 E ds ds8 f 0

~2!@ t,s,s8;Q#g1@s;Q#g1@s8;Q#

1E ds f1
~1!@ t,s;Q#g1@s;Q#1 f 2†t;g0@Q#‡D1O~l3!,

~6!

where we have used the abbreviations

f n~k!@ t,s1 ,s2 ,...,sk ;Q#[
dkf n@ t;J#

dJ~s1!dJ~s2!¯dJ~sk!
U

J5g0@Q#

.

~7!

Comparing the left- and right-hand sides of Eq.~6! in each
order ofl, we obtain the expressions forgm in terms of f n ,
which we call the ‘‘inversion formulas’’@10#:

g0@ t;Q#5 f 0
21@ t;Q#, ~8!

g1@ t;Q#52E dt8 f 0
~1!21

@ t,t8;Q# f 1@ t8;g0#, ~9!

g2@ t;Q#52E dt8 f 0
~1!21

@ t,t8;Q#

3S 1
2 E dsds8 f 0

~2!@ t8,s,s8;Q#g1@s;Q#g1@s8;Q#

1E ds f1
~1!@ t8,s;Q#g1@s;Q#1 f 2†t8;g0@Q#‡D ,

~10!

where f 0
(1)21

is defined by

E dt8 f 0
~1!21

@ t,t8;Q# f 0
~1!@ t8,s;Q#5d~ t2s!. ~11!

Summarizing, we first calculate the expectation value a
functional of a physical external source in the framework
the CTP formalism, and then, by solving the functional
versely for the source with the aid of inversion formulas, t
EOM of the expectation value is obtained by removing t
external source. In the following, we apply this method
the case whereQ is the number, and directly derive the EOM
of the number which turns out to have the form of the QK

Note that the inversion method is nonperturbative in
following sense. As discussed in Ref.@10#, even though the
original series@Eq. ~4!# is truncated and calculated with th
finite number of diagrams, the inverted series@Eq. ~5!# can
include infinite diagrams through the process of inversi
Of course which subdiagrams are included inQ becomes
different if we introduce the source in other way than Eq.~1!,
and hence the inverted series depend on the choice of
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source. A good source will handleQ efficiently, so that the
inverted relation describes the dynamics of the expecta
value in a satisfactory fashion. At least to make the invers
method work, we need a nontrivial lowest-order function
expressionf 0@ t;J# which can be inversely solved forJ. This
becomes the key point for deriving the QKE.

III. DERIVATION OF QKE: GENERALIZED
BOLTZMANN EQUATION

In this section, we first clarify the problem of applying th
inversion method to the number operator. Then, in orde
overcome the difficulty, a type of probing source is intr
duced, with which the inversion method works. The kine
equation is then derived as an EOM of number in the ne
to-leading order of the perturbation. A higher-order corre
tion to the QKE is also presented.

A. Introduction of probing source

Let us see what is the problem in the case of the num
operator. We consider a nonrelativistic boson field of a
mogeneous system described by the HamiltonianĤ5Ĥ0

1Ĥ int , with

Ĥ05(
k

ekĉk
†ĉk , ~12!

Ĥ int5
l

4 (
k,k8,q

ĉk1q
† ĉk82q

† ĉkĉk8 , ~13!

whereĉk
† and ĉk are creation and annihilation operators

momentumk, respectively andl is a coupling constant
which is assumed to be small and identified with the exp
sion parameter in Eq.~4!. Extension to other type of interac
tion is straightforward. At an initial timet1 , the system is
described by the density matrixr̂, and we assume in thi
section that no initial correlation exists among differe
wave-number components;r̂ can be written as a produc
from Pkr̂k , where r̂k is a density matrix for each wav
number which gives the expectation value of the numbe
initial time as nk(t I)5Tr r̂kĉk

†ĉk . Inclusion of the initial
correlation is studied in Sec. IV.

In order to derive the EOM of the expectation value of t
numbern̂k(t)5ĉk

†(t)ĉk(t), a naive choice of the source is t

replace the HamiltonianĤ by Ĥ2(kJk(t)ĉk
†(t)ĉk(t). Then

in a path-integral representation of the CTP generating fu
tional given in Eq.~2!, this source can be built into the fre
part of the Lagrangian as

L0
J~c1!2L0

J~c2!5(
k

c i ,k* Di j ,kc j ,k , ~14!

with the matrix

Dk~ t,] t![S i\] t2ek1Jk~ t ! 0

0 2 i\] t1ek2Jk~ t !
D .

~15!
n
n
l
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The unperturbed propagator is essentially the inverse of
matrix in Eq.~15!, and, with this propagator, if we evaluat
the expectation valuenk(t) in the absence of interaction, w
obtain the initial valuê n̂k(t)&J5nk(t I). This is due to the
fact that Ĥ02SkJkn̂k commutes withn̂; n is conserved at
the level of free theory even whenJkÞ0. Since no depen-
dence onJ appears in̂ n̂k(t)&J , we fail to make the lowest-
order inversion corresponding to Eq.~8!, and hence the in-
version formulas cannot be used in this case. A probe of
form of Eq. ~15! does not disturb the system so efficient
that the number operator cannot be handled.

Then why does the counterterm method in Ref.@5# work?
According to Ref.@5#, the time-local counterterm can be co
structed so as to keep the following structure of the f
propagator in the CTP formalism~we suppress the index o
wave number for a while!,

G~ t,s![2Tr r̂S Tĉ~ t !ĉ†~s! ĉ†~s!ĉ~ t !

ĉ~ t !ĉ†~s! T̃ĉ~ t !ĉ†~s!
D

c

5u~ t2s!S h~ t,s! k~ t,s!

h~ t,s! k~ t,s!
D

1u~s2t !S k* ~s,t ! k* ~s,t !

h* ~s,t ! h* ~s,t ! D , ~16!

where the subscriptc means the connected part, and

h~ t,s![2^ĉ~ t !ĉ†~s!&c , ~17!

k~ t,s![2^ĉ†~s!ĉ~ t !&c . ~18!

As far as structure~16! is kept, the perturbative calculatio
of the expectation value of any Hermitian operator yields
real value. Then, as shown in Appendix A, the counterte
c i* Mi j c j , with the matrix

M~ t !5S \Dv~ t !2 ia~ t ! 2 i „\g~ t !2a~ t !…

i „\g~ t !1a~ t !… 2\Dv~ t !2 ia~ t !
D , ~19!

is allowed to be subtracted from the free part of the Lagra
ian. HereDv, a, andg are all real functions which are de
termined by appropriate conditions. The bare propagator
culated from L0(c1)2L0(c2)2c i* Mi j c j leads to a
nontrivial time dependence of the number in the absenc
interaction. The existence of the parameters as a nondiag
element in Eq.~19! is a crucial point.

Comparing Eqs.~19! and ~15!, the parameter we utilized
as a physical external source in Eq.~15! corresponds toDv
in Eq. ~19!. Equation~19!, however, suggests that anoth
physical source corresponding toa or g can be introduced as
a probe. Note that what the inversion method requires is
expression of the expectation value as a functional of so
‘‘physically sensible’’ source, and it is not restricted to
source of the form of Eq.~15!. Here, ‘‘physically sensible’’
means that the expectation value of Hermitian operator un
the existence of this source is guaranteed to be real.

Our choice in this paper is the source corresponding ta
in Eq. ~19!. The source corresponding tog can be treated
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5956 PRE 62JUN KOIDE
similarly, and is discussed in Appendix B. Then the free p
of the Lagrangian including the source has now the matr

D~ t,] t!5S i\] t2e1 iJ~ t ! 2 iJ~ t !

2 iJ~ t ! 2 i\] t1e1 iJ~ t !
D . ~20!

Note that although we have introduced the source
Eq. ~20!, what we will calculate in the following is just the
expectation value of the number. For simplicity, we calcul
the expectation value of the number by path integration us
c1* c1 . But the results are the same for other choic
c2* c2 ,c2* c1 , or their linear combinations. Note also th
c1* c1 or c2* c2 should be understood as the product of fie
variables whose time arguments differ infinitesimally
c1* (t10)c1(t) or c2* (t20)c2(t), respectively, which re-
sults from the coherent-state path-integral representation

B. Unperturbed propagator and number

Starting with Eq.~20!, the unperturbed propagatorG0 is
calculated from the relation

D~ t,] t!G0~ t,s!5G0~ t,s!D~s,2]T s! ~21!

52 i\d~ t2s!, ~22!

where]T implies left differentiation. SinceD has been chose
as to keep structure~16! unchanged,G0 has the same struc
ture in which h and k are replaced byh0 and k0 , respec-
tively. Then Eq.~22! leads to the equations

~ i\] t2e!h0~ t,s!50, ~23!

~ i\] t2e!k0~ t,s!50, ~24!

for t.s, and

„i\] t2e1 iJ~ t !…k0* ~s,t !5 iJ~ t !h0* ~s,t !, ~25!

„i\] t2e2 iJ~ t !…h0* ~s,t !52 iJ~ t !k0* ~s,t ! ~26!

for s.t. The boundary conditions att5s are given as

h0~s,s!2k0* ~s,s!521, k0~s,s!2h0* ~s,s!51, ~27!

h0~s,s!2h0* ~s,s!50, k0~s,s!2k0* ~s,s!50. ~28!

From Eqs.~28!, h0(s,s) andk0(s,s) are real functions. Then
two conditions in Eq.~27! are identical, and simply expres
the fact that the expectation value of the equal-time comm
tator @ĉ,ĉ†# is unity. Note that from definition~18!, k0(t,t)
gives the expectation value of the number operator~multi-
plied by 21! in the absence of the interaction. Which w
denote asn(0)(t).

From Eqs.~23! and ~24!, we obtain, fort.s,

k0~ t,s!5e2~ i /\!e~ t2s!k0~s,s!52n~0!~s!e2~ i /\!e~ t2s!, ~29!

h0~ t,s!5e2~ i /\!e~ t2s!h0~s,s!52„n~0!~s!11…e2~ i /\!e~ t2s!.
~30!

Then exchangingt ands in Eqs.~29! and~30! and taking the
complex conjugation,h0* (s,t) and k0* (s,t) are obtained for
rt

s

e
g
;

-

s.t. Substituting these into Eqs.~25! or ~26!, both equations
become identical, and we find thatn(0) must satisfy the con-
dition

J~ t !5\] tn
~0!~ t !. ~31!

This gives the EOM forn(0), and we can solve this to ex
pressn(0) as a functional ofJ, with the result

n~0!@ t;J#5n~0!~ t I!1E
t I

t

ds
J~s!

\
. ~32!

Thus Eqs.~29!, ~30!, and ~32! determine the unperturbe
propagatorG0 with structure~16!, where h and g are re-
placed byh0 andg0 , respectively.

As already seen from Eqs.~32! or ~31!, we succeeded in
making the expectation value of the number depend onJ in
the leading order, i.e.,O(l0). This makes the inversion for
mula applicable. The right-hand side of Eq.~32! corresponds
to the desired lowest-order functionalf (0) in Eq. ~4!, and
Eq. ~31! is the inverted relation, the right-hand side of whic
corresponds tog(0) of Eq. ~5!. So our next task is to calculat
the perturbative correction ton, and then to derive the cor
rection to the EOM@Eq. ~31!# with the aid of the inversion
formulas.

C. Perturbative correction and the QKE

With the propagator2G0 expressed by the arrow goin
from c* to c and the vertex6l/ i\ ~the signs1 and 2,
respectively, correspond to the forward and backward ti
paths!, the unperturbed numbernk

(0) is represented diagram
matically as Fig. 1~a!, and the nonzero perturbative corre
tion to nk@ t;J# first comes from a diagram shown i
Fig. 1~b!, which is ofO(l2).

The contributions ofO(l) from a tadpole type self-
energy insertion to Fig. 1~a! vanish, because those from th
vertices on forward and backward time branches cancel e
other. In general, the contributions from the diagrams w
tadpoles do not vanish for higher orders, but can be ren

FIG. 1. Diagrams for the expectation valuen@J#. ~a! The lead-
ing orderO(l0). ~b! The next-to-leading orderO(l2). The vertex
of the open circle expressesc1* c1 at t.
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malized into the one-particle energye by the constant shift

ek
R5ek1l(

q
nq

~0!R , ~33!

and by preparing the corresponding counterterm.@The super-
scriptR in the right-hand side of Eq.~33! expresses thatn(0)

is written in terms of the renormalizede.# In the following,
this renormalization will be understood without the sup
script R, and diagrams with tadpoles will not be considere

As the result, the expectation value of the number a
functional ofJ is given up to the next-to-leading order as

nk@ t,J#5nk
~0!@ t,J#1S l

\ D 2

(
q,k8

E
t I

t

dt8E
t I

t8
ds8

3cos$vk,q,k8~ t82s8!%Ñk,q,k8
~2!

~s8!, ~34!

where

vk,q,k8[
1

\
~ek1ek82k2eq2ek82q!, ~35!

Ñk,q,k8
~2!

~ t ![„nk
~0!~ t !11…„nk82k

~0!
~ t !11…nq

~0!~ t !nk82q
~0!

~ t !

2nk
~0!~ t !nk82k

~0!
~ t !„nq

~0!~ t !11…„nk82q
~0!

~ t !11….

~36!

Recall thatÑ(2) is a functional ofJ since, alln(0)’s in Eq.
~36! are functionals ofJ given in Eq. ~32!. Equation~34!
corresponds tof 01l f 11l2f 2 of Eq. ~4!, wheref 1 vanishes
as mentioned above.

Applying the inversion formula~10!, the correction to
EOM ~31! is obtained. In this case, on the right-hand side

Eq. ~10!, f 0
(2) and f 1

(1) vanish andf 0
(1)21

(t,s) is \] td(t2s).
Thus we obtain theO(l2) term by operating2\] td(t2s)
to the second term of the right-hand side of~34!, and by
replacingn(0)@ t;J# contained inÑ(2) by n(t); In course of
the inversion, as seen from Eq.~7!, all the functionals ofJ
are evaluated atJk5\ṅk , and since the functional expres
sion of n(0)@J# is given by Eq.~32!, n(0)@J# ’s in the func-
tional are replaced byn(t). Thus we obtain the inversion o
Eq. ~34! as

Jk~ t !5\] tnk~ t !2
l2

\ (
q,k8

3E
t I

t

dscos$vk,q,k8~ t82s8!%Nk,q,k8
~2!

~s!, ~37!

whereN(2) is defined by Eq.~36!, in which all then(0)’s are
replaced byn. If we set the external sourceJ50, Eq. ~37!
gives the EOM for the number which is nothing but t
QKE. This type of QKE is known as a non-Markovian e
tension of the Boltzmann equation~see, e.g., Refs.@16–18#!
and, as we will see in Sec. III E, the total energy~sum of the
kinetic and interaction energies! is conserved by this QKE.

It is expected that dissipative effect appears from the s
mation over wave numbers, and hence the collisional in
mation at times decays with some time scale. If this tim
-
.
a

f

-
r-

scale is much shorter than that of the variation of the nu
ber, the QKE can be approximated by a Markovian equat
which is obtained by the adiabatic expansion. Setting
initial time t I52`, we expandN(2)(s) around the timet as
N(2)(s)5N(2)(t)1(s2t)Ṅ(2)(t)1¯ , regarding the time
differentiations to be small. Then the integral becomes

E
2`

t

dscosv~ t2s!N~2!~s!5pd~v!N~2!~ t !

1
`

v2 Ṅ~2!~ t !1¯ , ~38!

where` expresses the principal value. The second term
the right-hand side is proportional toṅ, and gives a pertur-
bative correction to the coefficient of the first term on t
right-hand side of Eq.~37!, which becomesO(l4) and can
be neglected~cf., however, Refs.@16,18# for its meaning.!
Regarding all higher time derivatives to be small, we ta
into account up to the first term of Eq.~38!, and obtain the
familiar Boltzmann equation

\] tnk~ t !5pl2(
q,k8

d~ek1ek2k82eq2eq2k8!Nk,q,k8
~2! . ~39!

As is well known, with this Markovian Boltzmann equatio
the conservation of the total energy is not realized, and o
the kinetic energy is conserved, and in the sense that
interaction do not contribute to nondissipative characteris
of the system, the Boltzmann equation@Eq. ~39!# is referred
to as the kinetic equation of ideal gas@19#.

D. Higher-order corrections

The higher-order correction to the QKE is quite syste
atically derived by the inversion method. Let us see the ne
order correction to QKE~37!, i.e., theO(l3) term, in the
framework presented in Sec. III B.~Of course the higher or-
ders in the framework of Appendix B can be calculated
the same way.! We first calculate the next order of Eq.~34!,
and then the corresponding correction to the EOM is deri
by inversion formulas.

The corrections ofO(l3) to n@ t;J# come from the dia-
grams shown in Fig. 2. They are evaluated as

nk
~3!@ t;J#5S l

\ D 3

(
k8,q,q8

E
t I

t

dt8E
t I

t8
dsE

t I

s

ds8

3ˆ

1
2 sin$vk,q,k8~ t82s!1vk,q8,k8~s2s8!%

3Ñq,k8
~1!

~s!Ñk,q8,k8
~2!

~s8!

2 1
2 sin$vk,q,k8~ t82s!1vq8,q,k8~s2s8!%

3Ñk,k8
~1!

~s!Ñq8,q,k8
~2!

~s8!

12 sin$vk,q,k8
8 ~ t82s!1vk,q8,k8

8 ~s2s8!%

3M̃q,k8
~1!

~s!M̃ k,q8,k8
~2!

~s8!

22 sin$vk,q,k8
8 ~ t82s!1vq8,q,k8

8 ~s2s8!%

3M̃ k,k8
~1!

~s!M̃q8,q,k8
~2!

~s8!‰, ~40!
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wherev andN(2) are defined in Eqs.~35! and ~36!, respec-
tively, and

vk,q,k8
8 [

1

\
~ek1eq2k82eq2ek2k8!5vk,q,k1q2k8 ,

~41!

Ñk,k8
~1! [~nk

~0!11!~nk82k
~0!

11!2nk
~0!nk82k8

~0! , ~42!

M̃ k,k8
~1! [~nk

~0!11!nk2k8
~0!

2nk
~0!~nk2k8

~0!
11!, ~43!

M̃ k,q8,k8
~2! [~nk

~0!11!~nq82k8
~0!

11!nk2k8
~0! nq8

~0!

2nk
~0!nq82k8

~0!
~nk2k8

~0!
11!~nq8

~0!
11!

5Ñk,q8,k1q82k8
~2! . ~44!

Note thatÑ andM̃ are functionals ofJ, sincen(0)’s in these
expressions are given as Eq.~32!. Equation~40! corresponds
to f 3@ t;J# of Eq. ~4!.

The correction ofO(l3) to the EOM ofn is obtained by
the third order inversion formula

g3@ t;Q#52E dt8 f 0
~1!21

@ t,t8;Q#S 1
6 E dsds8ds9

3 f 0
~3!@ t8,s,s8,s9;Q#g1@s;Q#g1@s8;Q#g1@s9;Q#

1E dsds8 f 0
~2!@ t8,s,s8;Q#g1@s;Q#g2@s8;Q#

1 1
2 E dsds8 f 1

~2!@ t8,s,s8;Q#g1@s;Q#g1@s8;Q#

1E ds f1
~1!@ t8,s;Q#g2@s;Q#

1E ds f2
~1!@ t8,s;Q#g1@s;Q#1 f 3†t8;g0@Q#‡D ,

~45!

FIG. 2. Diagrams forO(l3) contributions ton@J#.
with the notation in Sec. II B. As in the case ofO(l2), only
the last term in the parentheses on the right-hand side
Eq. ~45! makes a nonzero contribution, sincef 0 is linear inJ
and f 15g150. Thus the inversion of Eq.~40! is obtained as

Jk~ t !5\] tnk~ t !2
l2

\ (
q,k8

E
t I

t

dscos$vk,q,k8~ t2s!%Nk,q,k8
~2!

~s!

2
l3

\2 (
k8,q,q8

E
t I

t

dsE
t I

s

ds8

3ˆ

1
2 sin$vk,q,k8~ t2s!1vk,q8,k8~s2s8!%

3Nq,k8
~1!

~s!Nk,q8,k8
~2!

~s8!

2 1
2 sin$vk,q,k8~ t2s!1vq8,q,k8~s2s8!%

3Nk,k8
~1!

~s!Nq8,q,k8
~2!

~s8!

12 sin$vk,q,k8
8 ~ t2s!

1vk,q8,k8
8 ~s2s8!%

3Mq,k8
~1!

~s!M k,q8,k8
~2!

~s8!

22 sin$vk,q,k8
8 ~ t2s!1vq8,q,k8

8 ~s2s8!%

3M k,k8
~1!

~s!Mq8,q,k8
~2!

~s8!‰, ~46!

where N and M are now functions ofn which are respec-
tively obtained fromÑ and M̃ by replacingn(0)@J# ’s with
n’s as in Eq.~37!. Then the QKE withO(l3) corrections
is obtained by settingJ50 in Eq. ~46!. We will see in
Sec. III E that the total energy is conserved by QKE~46!,
similarly as in Eq.~37!.

There appear new collision terms in Eq.~46! whose forms
are quite different from the usual Boltzmann-type collisi
factor. The first two terms in the braces of Eq.~46! are con-
tributions from the diagram in Fig. 2~a!, and are due to the
binary collision. The last two terms are from the diagram
Fig. 2~b! which expresses the three-body collision effe
These will be seen from the diagrammatic structure of Fig
or from the fact that, in the dilute limit, the first two term
becomeO(n2), while the last two terms becomeO(n3). Let
us see these more closely.

In the first two terms, the factorN(2) is the ordinary
Boltzmann-type collision factor andN(1) has a ‘‘gain-loss’’
form found by Morozov and Ro¨pke @4# in the study of the
initial correlation effect; we will see a similar term in Se
IV, where we discuss the initial correlation@see Eq.~89!#. In
Ref. @4#, a generalized binaryT-matrix approximation is con-
sidered, and, after the Born approximation, the gain-loss
tor appears in one of the initial correlation terms. There@and
in Eq. ~89!#, the correlations at the initial stage is multiplie
by the gain-loss factor, while in Eq.~46! the binary collision
at the earlier time is multiplied by it. This suggests that t
gain-loss factor appears from the collision of a correla
pair of particles. In Eq.~46! the correlation take place in th
preliminary collision at times8, which provides the factor
N(2)(s8), whereas in Ref.@4# ~or in Sec. IV! it comes from
the initial correlation.
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The last two terms in the braces of Eq.~46! look slightly
more complicated. The fact that these terms are contribut
from the three-body collision can be seen by rewriti
Fig. 2~b! as Fig. 3. The part of the diagram encircled by t
dotted line represents the three-body scattering. The fa
M (2) is the usual binary collision factor, but the factorM (1)

has the form of the one-body process, and does not appe
the binary collision approximation. This will be the time
see such a contribution in the QKE.

The factorM (1) can be interpreted as coming from th
collision between a correlated particle, which has collid
with some other particle before, and another particle wh
has been moving freely: For example, considering the d
gram of Fig. 4~a!, where the vertices are arranged in temp
ral order from right to left, we can rewrite it as Fig. 4~b! by
replacing each vertex with a local interaction via the dot
line. ~The replacement is not unique.! If we focus on the
arrows going from right to left in Fig. 4~b!, the particle
propagating with a single line is a free one in the sense
it has not collided before, and a double line represents
correlated particle. Then the one-body factorM (1) appears
from the point denoted by a double circle, where a single l
changes into a double one, and we can see that the
particle collides there with a correlated particle.

The adiabatic expansion of Eq.~46! becomes somewha
complicated, but can be carried out similarly as in Eq.~38!.
In the third term of Eq.~46!, the first term in the braces, fo
example, becomes

FIG. 3. Diagram of the three-body collision term. The subd
gram surrounded by the dotted line expresses the three-body
sion.

FIG. 4. The appearance of the one-body factorM (1).
ns

or

r in

d
h
-

-

d

at
e

e
ee

l3

2\2 (
k8,q,q8

S H 2
`

vk,q,k8
1pd8~vk,q,k8!] tJ Nq,k8

~1!
~ t !

3H pd~vk,q8,k8!1
`

vk,q8,k8
2 ] tJ Nk,q8,k8

~2!
~ t !

1H pd~vk,q,k8!1
`

vk,q,k8
2 ] tJ Nq,k8

~1!
~ t !

3H 2
`

vk,q8,k8
1pd8~vk,q8,k8!] tJ Nk,q8,k8

~2!
~ t ! D . ~47!

Similar expressions are obtained for other terms. The te
with the time derivative give higher-order corrections as
the case of Eq.~38!, and the terms without the time deriva
tive represent the correction to the long time behavior of
QKE. Thus the QKE is reduced to the Markovian equation

\] tnk~ t !5
pl2

\ (
q,k8

d(vk,q,k8) Nk,q,k8
~2!

~ t !2
2l3

\2 (
k8,q,q8

3H 1
4 ImS 1

vk,q,k8
2

1

vk,q8,k8
2 DNq,k8

~1! Nk,q8,k8
~2!

~ t !

2 1
4 ImS 1

vk,q,k8
2

1

vq8,q,k8
2 DNk,k8

~1! Nq8,q,k8
~2!

~ t !

1ImS 1

vk,q,k8
82

1

vk,q8,k8
82 D Mq,k8

~1! M k,q8,k8
~2!

~ t !

2ImS 1

vk,q,k8
82

1

vq8,q,k8
82 D M k,k8

~1!
~ t !Mq8,q,k8

~2!
~ t !J ,

~48!

where we have used the abbreviation 1/v2[1/(v2 i0)
5`/v1 ipd(v). This Markovian expression coincides wit
the one derived in Ref.@20#, where the tadpole contributions
which are renormalized as Eq.~33! in our theory, are explic-
itly calculated. It is shown there that, in the Markovian ca
the second and fourth terms in the braces of Eq.~48! can be
transformed into the first and third terms, respectively, a
thus the right-hand side of Eq.~48! can be expressed a
Nk,q8,k8

(2) multiplied by the modified amplitude. But due to th
transformation, the three-body aspects of the collision te
are lost in Ref.@20#.

It is not difficult to see that this Markovian equation co
serves only the kinetic energy, and that the Bose-Eins
distribution for an ideal gas is a stationary solution
Eq. ~48!. Thus, like the Markovian Boltzmann equation~39!,
the interaction does not contribute to the equilibrium pro
erty, although the higher-order corrections of the collisi
are included in Eq.~48!. In this sense, Eq.~48! is a proper
extension of the Boltzmann equation as the kinetic equa
of ideal gas as in Sec. III C.

The three-bodyT-matrix approximation to the QKE wa
studied in several works@21#, and, according to Ref.@21#, a
three-body collision factor liken3(n11)32(n11)3n3 is ex-
pected to appear together with the three-particle energy c
servation factor after the Markovian approximation. Fro

-
lli-
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our observations, however, such a collision term will n
appear in the QKE if the elementary interaction is of a tw
body nature. The collision at each time produces at mo
factor N(2)(M (2)), N(1), or M (1), or a factor like (n11)2n
2n2(n11) ~which does not appear in the approximati
presented here!. After the adiabatic expansion, the collisio
term can be expressed by time-local product of these fac
but a factor like n3(n11)32(n11)3n3 does not appea
from such a product.

The appearance of such a three-body collision term
Ref. @21# is due to the formal double-time expression of t
three-bodyT matrix; of the six time arguments inT matrix
T(t1 ,t2 ,t3 ;t18 ,t28 ,t38), the incoming three and outgoing thre
are equated and represented asT(t;t8), respectively. This is
formally realized by writing the three-body interaction as t
product of two-body interaction and unity~expressing non-
interaction!: V1235v12I 31v23I 11v31I 2 . If the three propa-
gators going into~out of! the T matrix really end at~start
from! the same vertex and hence contain the numbers a
same instant, a three-body collision factor liken3(n11)3

2(n11)3n3 can be produced. But this is not the case if t
elementary interaction is binary. In each term of the pert
bative expansion, only two of the three propagators go
into ~out of! theT matrix end at~start from! the same vertex
v and carry numbers at the same instant, while the other
does so with numbers at different times. Thus the three-b
collision term considered in Ref.@21# does not appear from
an elementary interaction of binary nature.

E. Conservation of the total energy

When we setJ50 the expectation value of the tota
Hamiltonian is time independent. The conservation of
total energy by the QKE derived above can easily be s
from a direct calculation of the time derivatives of the kine
energy and the interaction energy. Below, we show that th
cancel each other order by order.

First in O(l2), the time derivative of the kinetic energ
Ekin[^Ĥ0& is calculated by multiplying QKE~37! ~setting
J50! by ek , and summing overk, with the result

] tEkin~ t !5S l

\ D 2

(
k,k8,q

E
t I

t

ds
\vk,q,k8

4

3cos$vk,q,k8~ t2s!%Nk,q,k8
~2!

~s!. ~49!

Then, in the same order of the approximation, the interac
energyEint[^Ĥ int& is calculated from the diagrams shown
Figs. 5~a! and 5~b!. At first, with the propagator appearing i
Sec. III B, it is calculated as a functional ofJ; then, by evalu-
ating it at J5\ṅ, we obtain the interaction energy writte
in terms of n. As the result, the first-order contributio
@Fig. 5~a!# gives a constant

Eint
~1!5

l

2 S (
q

nqD 2

, ~50!

and the time-dependent contribution comes from Fig. 5~b!,
which is evaluated as
t
-
a

rs,

n

he

r-
g

ne
y

e
n

se

n

Eint
~2!~ t !52

l2

4\ (
k,k8,q

E
t I

t

dssin$vk,q,k8~ t2s!%Nk,q,k8
~2!

~s!.

~51!

Apparently, the time derivative of Eq.~51! cancels with
Eq. ~49!, and hence the total energy is conserved inO(l2).

Similarly, the correction ofO(l3) to the time derivative
of the kinetic energy@Eq. ~49!# is calculated from the third
term of Eq.~46! as

S l

\ D 3

(
k,k8,q,q8

E
t I

t

dsE
t I

s

ds8

3H \vk,q,k8
4

sin$vk,q,k8~ t2s!1vk,q8,k8~s2s8!%

3Nq,k8
~1!

~s!Nk,q8,k8
~2!

~s8!

1\vk,q,k8
8 sin$vk,q,k8

8 ~ t2s!1vk,q8,k8
8 ~s2s8!%

3Mq,k8
~1!

~s!M k,q8,k8
~2!

~s8!J , ~52!

and the correction to the interaction energy is calcula
from the diagrams shown in Figs. 5~c! and 5~d!, which lead
to the result

Eint
~3!~ t !52

l3

\2 (
k,k8,q,q8

E
t I

t

dsE
t I

s

ds8

3ˆ

1
4 cos$vk,q,k8~ t2s!1vk,q8,k8~s2s8!%

3Nq,k8
~1!

~s!Nk,q8,k8
~2!

~s8!

1cos$vk,q,k8
8 ~ t2s!1vk,q8,k8

8 ~s2s8!%

3Mq,k8
~1!

~s!M k,q8,k8
~2!

~s8!‰. ~53!

FIG. 5. Diagrams for the interaction energy. The vertex of t
open circle expresses (l/4)c1* c1* c1c1 .



e

it
x
e
e

B

et
n
ll

re
as
-

-

e

w
pe
on
om
e

d

r

In
r-
f

n

at-

-

s
se

o

s

PRE 62 5961QUANTUM KINETIC EQUATION IN THE CLOSED- . . .
We can easily see that the time derivative of Eq.~53! pre-
cisely cancels with Eq.~52!. This is seen by separating th
time derivative of Eq.~53! into two parts: a differentiation
with respect tot in the integrand, and one with respect tot in
the upper bound of the integral; the former cancels w
Eq. ~52!, while the latter vanishes by the symmetry on e
changingk and q8. This order-by-order cancellation of th
time derivative of the total energy is an interesting and w
come feature in the case of using the source@Eq. ~20!#, and
does not hold in the case of another source in Appendix

As pointed out before, the Markovian QKE’s~39! or ~48!,
approximated versions of Eqs.~37! or ~46!, respectively, do
not conserve the total energy but conserve only the kin
energy. This is in agreement with the former observatio
@16,17,19# that the total energy conservation is essentia
connected with the memory effect.

IV. INITIAL CORRELATIONS

Let us consider the initial correlation effects which we
neglected in Sec. III. The inclusion of initial correlations w
investigated in Refs.@22,11#, and formulated as a perturba
tion theory with a 333 matrix form propagator in
Refs. @13,12#, or as an initial condition for the Martin
Schwinger hierarchy in Ref.@23#. In this section, we show
that our theory can include initial correlations following th
treatment of Refs.@13,12,4#. Introducing the imaginary-time
path in addition to the forward and backward time paths,
calculate the propagator on this complex time path, and
form a perturbative calculation in terms of the interacti
and the initial correlation. The resultant expressions are c
pared with those in Ref.@4#, and the stationarity in the cas
of initial equilibrium is confirmed.

A. Description of initial state and mixed propagator

The initial state is assumed to be homogeneous, an
described by the density matrix

r̂~ t I!5~Tr e2bŜ!21e2bŜ, ~54!

where Ŝ is a function of ĉ and ĉ† ~see Ref.@24# for the
details of constructingr̂!. The factorb is just for notational
convention and need not be related to equilibrium tempe
ture. ~In the case of initial equilibrium,Ŝ is replaced byĤ,
and b expresses the inverse temperature.! DecomposingŜ

into quadratic termŜ0 and higher-order termsŜcorr, we as-
sume the form

Ŝ5Ŝ01Ŝcorr5(
k

§kĉk
†ĉk1 (

k,k8,q
l̃ĉk2q

† ĉk81q
† ĉkĉk8 , ~55!

where l̃ expresses the strength of the initial correlation.
the following we assumel̃ to be small, and consider pertu
bative corrections inl̃. Of course more general types o
correlations can be treated in a similar manner as far asŜcorr
is allowed to be regarded as a perturbation.

With the initial density @Eq. ~54!#, the matrix element
^c1Iur̂ Iuc2I& of ~2! can be represented by the usual cohere
state path integral as
h
-

l-

.

ic
s
y

e
r-

-

is

a-

t-

^c1Iur̂ Iuc2I&}E @dc3#e~ i /\!*0
b\dt„i\(kc3,k* c3,k1 iS~c3!…,

~56!

wherec3 is introduced as an integration variable which s
isfies the boundary conditionsc3(b\)5c1I and c3(0)
5c2I , andS(c3) is obtained fromŜ by replacing the opera
tor ĉ and ĉ† in Eq. ~55! by c and c* , respectively. As
usual,c3 evolves in imaginary time fromt50 to t5b\

with the evolution operatorŜ, and hence the time path i
extended to include this imaginary time. Hereafter, we u
Greek letters to express the imaginary time.
Then, as in Refs.@12#, @4#, the Green function is extended t
333 matrix form,

G̃[2Tr r̂S Tĉ~ t !ĉ†~s! ĉ†~s!ĉ~ t ! ĉ†~s!ĉ~ t !

ĉ~ t !ĉ†~s! T̃ĉ~ t !ĉ†~s! ĉ†~s!ĉ~ t !

ĉ~t!ĉ†~s! ĉ~t!ĉ†~s! Ttĉ~t!ĉ†~s!

D
c

5S G~ t,s!
k̃~ t,s!

k̃~ t,s!

h̃~t,s!h̃~t,s! g̃~t,s!
D , ~57!

whereĉ(t)[e(t/\)Ŝĉe(2t/\)Ŝ and Tt is the imaginary-time
ordering. The real-time componentG(t,s) is given in
Eq. ~16!, and the imaginary-time one is

g̃~t,s!5u~t2s!h~t,s!1u~s2t!k~t,s!, ~58!

with

h~t,s![2^ĉ~t!ĉ†~s!&c , ~59!

k~t,s![2^ĉ†~s!ĉ~t!&c , ~60!

and the mixed-time parts are defined by

h̃~t,s![2^ĉ~t!ĉ†~s!&c , ~61!

k̃~ t,s![2^ĉ†~s!ĉ~ t !&c . ~62!

Then the unperturbed propagatorG̃0 under the sourceJ
can be obtained as the inverse of

D̃5S i\] t2e1 iJ~ t ! 2 iJ~ t ! 0

2 iJ~ t ! 2 i\] t1e1 iJ~ t ! 0

0 0 i\]t1 i §
D .

~63!

As in Sec. III B, assuming thatG̃0 has the similar structure a
Eq. ~57!, in which h, g, etc. are replaced byh0 ,g0 , etc.,
respectively, we solve the inverse relation
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D̃G̃05G̃0D̃ ~64!

52 i\S d~ t2s!
0

0

0 0 d~t2s!
D . ~65!

Apparently for the real-time componentG(t,s), the equa-
tions forh0 andk0 are the same as Eqs.~23!–~28!, and hence
the solution is the same.

For the imaginary time elementg̃0 , Eq. ~65! leads to the
equations

~\]t1§!h0~t,s!50 ~ for t.s!, ~66!

~\]t1§!k0~t,s!50, ~ for s.t!, ~67!

with the boundary condition att5s.

h0~s,s!2k0~s,s!521. ~68!

This can be easily solved, with the results

h0~t,s!52„n~0!~ t I!11…e2~§/\!~t2s!, ~69!

k0~t,s!52n~0!~ t I!e
~§/\!~s2t!. ~70!

Finally for the mixed-time sector, Eq.~65! gives

~\]t1§!h̃0~t,s!50, ~71!

~ i\] t2e!k̃0~ t,s!50, ~72!

and the boundary conditions are given from the conditio
c1(t I)5c3(b\) andc2(t I)5c3(0), which yield

h̃0~t,t I!5k0~t,b\!5h0~t,0!, ~73!

k̃0~ t I ,s!5h0~b\,s!5k0~0,s!, ~74!

h̃0~0,s!5h0* ~s,t I!, h̃0~b\,s!5k0* ~s,t I!, ~75!

k̃0~ t,0!5k0~ t,t I!, k̃0~ t,b\!5h0~ t,t I!. ~76!

Then, solving Eqs.~71! and ~72! as

h̃0~t,s!52e2~§/\!th̃0~0,s!, ~77!

k̃0~ t,s!52e2~ i /\!e~ t2t I!k̃0~ t I ,s!, ~78!

the boundary conditions~73!–~76! are satisfied by

h̃0~0,s!52e~ i /\!e~s2t I!
„n~0!~ t I!11…, ~79!

k̃0~ t I ,s!52n~0!~ t I!e
~§/\!s, ~80!

with the initial unperturbed number

n~0!~ t I!5
1

eb§21
. ~81!
s

Summarizing, the real-time part is given by Eqs.~30!,
~29!, and~32! with the initial value of Eq.~81!, and that of
the imaginary-time component by Eqs.~69! and~70!, and the
mixed parts

h̃0~t,s!52e2~§/\!t
„n~0!~ t I!11…e~ i /\!e~s2t I!, ~82!

k̃0~ t,s!52e2~ i /\!e~ t2t I!n~0!~ t I!e
~§/\!s. ~83!

As discussed in Ref.@6#, with the appropriate counter-term
it is possible to maken(0) in h0 or k0 depend on imaginary
time, but this is not necessary in our problem.

B. Initial correlations in the QKE

With the above derived unperturbed propagator, let
calculate the expectation value of the number operator u
first order in the initial correlation and second order in t
interaction. This time, the diagrams are constructed with
propagatorG̃0 calculated above and with vertices whic
come fromĤ int , if it is on the real-time axis, and fromŜcorr,
if it is on the imaginary time axis.

In contrast to the case in Sec. III, the tadpole self-ene
inserted diagram does not vanish if the vertex is in imagin
time. Thus, inO(l̃), the initial correlation effect appear
from Fig. 6, which simply gives a constant

Dnk52bl̃nk
~0!~ t I!„nk

~0!~ t I!11…(
q

nq
~0!~ t I!. ~84!

This expresses a shift of the initial value due to the init
correlation, but such a constant term is not convenient for
inversion method sincen(0)@J5\ṅ# does not simply givesn.
To avoid this inconvenience, similarly as in Eq.~33!, we
renormalize the quadratic part ofŜ by

§k
R5§k1l̃(

q
nq

~0!R~ t I!, ~85!

and introduce a corresponding counterterm to cancel the
pole. As in Sec. III, the superscriptR will be suppressed in
the following.

The correction ofO(ll̃) to nk(t) comes from the dia-
gram of the same form as Fig. 1~b!, but this time one vertex
is on the real-time axis, which expressesĤ int , and the other
one is on the imaginary-time axis, representingŜcorr. As a
result, after integration over imaginary time,

ll̃

\2 (
q,k8

cos$vk,q,k8~ t2t I!%21

vk,q,k8

Ñk,q,k8
~2!

~ t I!

Vk,q,k8
~86!

FIG. 6. The tadpole self-energy inserted diagram ofO(l̃).
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is obtained, whereVk,q,k8[1(§k1§k82k2§q2§k82q)/\.
The contributions ofO(l2l̃) come from the diagrams in
Fig. 2, with one of the vertices on the imaginary-time ax
Then they are calculated as

l2l̃

\3 (
k8,q,q8

E
t I

t

dsE
t I

s

ds8

3H 1
2 cos$vk,q,k8~s2s8!1vk,q8,k8~s82t I!%

3Ñq,k8
~1!

~s8!
Ñk,q8,k8

~2! ,~ t I!

Vk,q8,k8

2 1
2 cos$vk,q,k8~s2s8!1vq8,q,k~s82t I!%

3Ñk,k8
~1!

~s8!
Ñq,q,k8

~2!
~ t I !

Vq8,q,k8

12 cos$vk,q,k8
8 ~s2s8!1vk,q8,k8

8 ~s82t I !%

3M̃q,k8
~1!

~s8!
M̃ k,q8,k8

~2!
~ t I !

Vk,q8,k8
8

o
o

on

a
ar
d

d
ch

s

.

22 cos$vk,q,k8
8 ~s2s8!1vq8,q,k8

8 ~s82t I !%

3M̃ k,k8
~1!

~s8!
M̃q8,q,k8

~2!
~ t I !

Vq8,q,k8
8 J , ~87!

whereVk,q8,k8
8 [(1)(§k1§q82k82§q82§k2k8)/\.

Since the number as a functional of sourceJ is expressed
by a double series expansion asf 5Sn,n8l

nl̃n8 f nn8 , the in-
version formulas should also be extended to double exp
sion: g5Sm,m8l

ml̃m8gmm8 . Although we do not set down
their somewhat lengthy expressions here, the derivation
the inversion formulas can be carried out in the same wa
in Sec. II B. In our problem, sincef 10 vanishes andf 00 is
linear inJ @f 10 and f 00 are f 1 and f 0 in Eq. ~4!, respectively#,
the formulas for (m,m8)Þ(0,0) up to (m,m8)5(2,1), are
simply reduced to the form

gmm8@ t;Q#52E dt8 f 00
~1!21

@ t,t8;Q# f mm8@ t8;g00#. ~88!

Thus as the result of the inversion, the QKE up
O(l2l̃) is obtained as
\] tnk~ t !5
l2

\ (
q,k8

E
t I

t

dscos$vk,q,k8~ t2s!%Nk,q,k8
~2!

~s!2
ll̃

\ (
q,k8

sin$vk,q,k8~ t2t I!%
Nk,q,k8

~2!
~ t I!

Vk,q,k8

1
l2l̃

\2 (
k8,q,q8

E
t I

t

dsH 1
2 cos$vk,q,k8~ t2s!1vk,q8,k8~s2t I!%Nq,k8

~1!
~s!

Nk,q8,k8
~2!

~ t I!

Vk,q8,k8

2 1
2 cos$vk,q,k8~ t2s!1vq8,q,k8~s2t I!%Nk,k8

~1!
~s!

Nq8,q,k8
~2!

~ t I!

Vq8,q,k8

12 cos$vk,q,k8
8 ~ t2s!1vk,q8,k8

8 ~s2t I!%Mq,k8
~1!

~s!
M k,q8,k8

~2!
~ t I!

Vk,q8,k8
8

22 cos$vk,q,k8
8 ~ t2s!1vq8,q,k8

8 ~s2t I!%M k,k8
~1!

~s!
Mq8,q,k8

~2!
~ t I!

Vq8,q,k8
8 J . ~89!
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The first term on the right-hand side is the usual binary c
lision term and the last two terms are a manifestation
initial correlation effects. Comparing these initial correlati
terms with the collision terms in Eq.~46!, we can see that the
collision factors ats8 in Eq. ~46! are replaced by initial cor-
relation factors which have the forms of binary collisions
the initial timet I . The second term, which is the term line
in the interaction, commonly appears in a calculation inclu
ing an initial correlation@25,4#. In the third term represente
by braces, the first two terms are ‘‘gain-loss’’ terms, whi
were first found by Morozov and Ro¨pke@4#. As mentioned in
Sec. III D, the gain-loss factorN(1) appears from the colli-
sion of two particles which are initially correlated. The la
two terms has the same ‘‘one-body’’ factor as Eq.~46!. Al-
l-
f

t

-

t

though these are not genuine three-body collision term, t
can be interpreted as a collision among the initially cor
lated two particles and another particle. To the autho
knowledge, such terms have not been found before, and
pear for the first time in this paper. These terms are
O(n3), and in the nondilute case, we must include the
corrections in the second order of the initial correlation.

In the case of initial equilibrium, we setl̃5l and§5e,
and then, forO(l2) in Eq. ~89!, the first two terms cance
each other ifN(2)(s) in the first term is replaced by the initia
valueN(2)(t I) which is consistent with the vanishing of th
time derivative. Hence the stationarity of the equilibriu
state is confirmed up toO(l2). For O(l3) in the case of the
initial equilibrium, we need an extra correction ofO(ll̃2) to
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QKE ~89!, and, after somewhat tedious calculations, we c
show that this initial correlation term, together with th
O(l2l̃) term in Eq.~89! cancels theO(l3) collision term in
Eq. ~46! in the same way asO(l2). Note that in these cal
culations, the corrections ofO(l̃2) and O(l̃3) which con-
tribute to constant shiftsDn, are renormalized to§ by Eq.
~85! similarly to the tadpole contribution, and this renorma
ized § is equated withe in the initial equilibrium case.

V. SUMMARY AND DISCUSSION

We have investigated the QKE in the framework of CT
formalism. By the inversion method, with a type of pro
introduced in Eq.~20!, the QKE was simply derived as th
EOM of the expectation value of the number operator
should be emphasized that what we have calculated, e.g
Eqs.~34! and~40!, is just the expectation value of the num
ber. We have made no ansatz concerning the form of
propagator, and hence there is no uncertainty in the de
tion of the number appearing in the QKE.

The QKE obtained by our method coincides with th
derived by the GKB formalism@3#, at least up to the approxi
mation considered here. In the GKB formalism, the QKE
derived from the Dyson equation for the two-point Gre
function, and a closed equation for the occupation numbe
obtained with the use of the GKB ansatz in the form of t
propagator. Roughly, the collision integral appears from
self-energy, with both ends contracted by a propagator in
formalism. The fact that our formalism gives the same res
as the GKB formalization can be seen from the form
propagator derived in Sec. III B. The GKB ansatz with t
free-particle approximation for retarded and advanced Gr
functions is recovered from the propagator in Sec. III B if w
evaluate it atJ5\ṅ to replacen(0)@J# by n, as is indeed
done in the course of inversion. Up to the approximation
this paper, collision terms are calculated from diagrams
which both ends of the self-energy inserted propagator
connected toc* c; after the inversion, this provides the sam
collision term as the GKB formalism.

Note, however, that the GKB ansatz is just an ansatz
the form of propagator, and strictly speaking, the num
that appears therein is not a well defined object. On the o
hand, in our method, the number appearing in the QKE
really the expectation value of the bare number operator

For the sake of definite expressions, we have restric
ourselves to simple perturbation up to third order, and he
the obtained QKE’s are special cases of those, e.g., in R
@16–18#. For more realistic situations where effects like d
namical screening or strong collision should be considere
partial summation of the polarization@26,27# or ladder dia-
grams@11,16,18,27# will be required. These are beyond o
scope, but will be treated similarly as in the GKB formalis
Inclusion of the self-energy effects will be realized by t
counterterm method@5,7,8#, where a part of the self-energ
is renormalized into the free part of the Lagrangian, a
enables a description of the quasiparticle number. It is
difficult to combine the inversion method with the counte
term method, though the approximations made there bec
somewhat ambiguous.

As we have seen in Sec. III A, there are some choice
the introduction of the probing source. As a general presc
n
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tion, we should first introduce the source such that the
pectation valueQ@J# is guaranteed to be real. This will re
strict the form of the source to a few candidates.@In our case,
e, a, andg in Eq. ~A5!, if the counterterm is assumed not
contain time derivatives.# Then, hopefully, the source depen
dence in the lowest order of the perturbation is required to
able to use the inversion formulas.~a andg are retained in
our case.! If arbitrariness is still there, a convenient form wi
be chosen which makes the calculation simple, guaran
the conservation law, etc.

The contents of Eq.~20! @or Eq.~B1!# becomes somewha
clear from the ‘‘physical’’ representation@15# of the CTP
effective action forc, which is a Legendre transformation o
the generating functionalW, with c itself as the order param
eter. The physical representation is introduced through
transformation of the variableJC[ 1

2 (J11J2), and JD[J1

2J2 . Then physically sensible situationJ15J2 is realized
by JD50, and therebyJC plays the role of a physical exter
nal sourceJ. From the CTP generating functionalW, in
which the sourceJ couples to c, the effective action
G@cD ,cC# is calculated through the Legendre transform
tion of W@JC ,JD# @15,10#, where cD[dW/dJC and cC

[dW/dJD . Roughly speaking,cD5c12c2 , cC5 1
2(c1

1c2) and the inverse propagatorD is the tree part of the
second derivative ofG.

With these prescriptions, a source of the form of Eq.~20!
couples tocD* cD , and this means that the system is d
turbed from the external by shiftingd2G/dcD* dcD which is
the one-particle-irreducible amputated part of the correlat

function ^$ĉ†,ĉ%&. This may be the reason why we ca
handle a number with this source. Another source discus
in Appendix B couples tocD* cC2cC* cD , and corresponds
to the shift of the imaginary part of the retarded self-ene
d2G/dcD* dcC . As is discussed in Appendix B, though th
source also handles the number, it gives a less useful exp
sion for the QKE in the sense that the order-by-order con
vation of the total energy shown in Sec. III E is not realiz
in this case.

The way to introduce the source presented here will
extended to cases other than that of the number operator
generic composite operatorsQ(ŵ) of any dynamical variable
ŵ. The above discussion suggests that we can couple
source to Q(wD), which means a probe throug
Q(d/dwD)G@wD ,wC#. Since the derivative ofG with respect
to wD’s expresses the one-particle-irreducible amputated
of symmetrized correlation function, the source coupled
Q(wD) is always physically sensible, and the expectat
value of Q(ŵ) depends on this source nontrivially in th
absence of interaction. Thus the first and second of the ab
mentioned criteria for the source are inherent in this cho
of the source. In some cases, calculation will be simplifi
compared with the usual procedure with the source coup
to Q(w1)2Q(w2).
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APPENDIX A: STRUCTURE OF THE
DISSIPATIVE COUNTERTERM

In the original paper of Lawrie@5#, the system discusse
is a relativistic scalar boson field. Although the essential p
of the treatment is the same for a nonrelativistic boson fie
in order to make this paper self-contained here we prese
derivation of the dissipative counterterm@Eq. ~19!#. The
starting point is a Green function with the structure of E
~16!; keeping this structure, we construct an operatorD
which satisfies relation~22!.

First we consider the case where the system is tempo
homogeneous. Then the propagator become a function o
time difference; with the four real functionsu, v, w, andz,
we write it as

h~ t !5u~ t !1 iv~ t !, k~ t !5w~ t !1 iz~ t !, ~A1!

which leads to a Fourier transformation with the form

Ǧi j ~v![E
2`

`

dt e2 ivtGi j ~ t !

5S A1C1 i ~B1D ! 2C

2A A1C2 i ~B1D !
D

1S ~b2d!1 i ~a2c! 22d

22b ~b2d!2 i ~a2c!
D .

~A2!

Here the real functionsA, B, C, andD anda, b, c, andd are
defined as the real and imaginary parts of the Four
Laplace transformations ofu, v, w, andz, respectively,

A~v!1 ia~v![E
0

`

dt e2 ivtu~ t !, ~A3!

etc.,A, B, C, andD are even functions ofv, anda, b, c, and
d are odd inv.

Then the Fourier transform ofD is obtained from the
inverse relation~22!, and we expand it in terms ofv. Taking
up to the linear terms ofv, we require that the linear par
coincides with the bareD0 . Thus the structure ofD is deter-
mined as

Ď5S 2\~v1V!1 ia i ~\g2a!

2 i ~\g1a! \~v1V!1 ia D , ~A4!

whereV, g, anda are real constants.
In a temporary inhomogeneous case, like an ansatz o

inverse propagator, we allow the coefficients in Eq.~A4! to
be time dependent, and writeD as

D~ t,] t!

5S i\] t2„\V~ t !2 ia~ t !… i „\g~ t !2a~ t !…

2 i „\g~ t !1a~ t !… 2 i\] t1„\V~ t !1 ia~ t !…
D ,

~A5!

where V, g, and a are now real functions oft. Thus the
dissipative counterterm matrix is defined as Eq.~19!, with
Dv5V2e/\. This ansatz is confirmed to be consistent w
rt
,

t a

.

ry
he

r-

he

Eq. ~22!, and a dissipative propagator can be derived wit
time-dependent number. Note that from this dissipat
counterterm, unlike in the case of relativistic boson field
Ref. @5#, Eq. ~22! can be solved rigorously, and we do n
need approximations for the unperturbed dissipative pro
gator.

APPENDIX B: ANOTHER TYPE OF PROBE

As mentioned in Sec. III A, there is another choice
probe which couples toc2

†c12c1
†c2 . This is the source uti-

lizing g in Eq. ~19!, and is introduced using the following
inverse propagator:

D~ t,] t!5S i\] t2e iJ~ t !

2 iJ~ t ! 2 i\] t1e D . ~B1!

We demonstrate that the unperturbed number also show
nontrivial dependence on this source, and that the invers
method leads to another kinetic equation, which reduce
the ordinary Boltzmann equation in the adiabatic limit.

The bare propagator in this scheme is calculated by
inverse of Eq.~B1! as in Sec. III B. The solution of Eq.~22!,
in whichD is replaced by Eq.~B1! is obtained similarly as in
Sec. III B. With n(0)(t)5k0(t,t) satisfying the EOM

J~ t !52
\

2
] t ln„112n~0!~ t !…, ~B2!

the unperturbed propagator is given by

k0~ t,s!52n~0!~s!e2~1/\!*s
t dt8~e2 iJ !

52n~0!~s!S 112n~0!~ t !

112n~0!~s!
D 1/2

3e2~ i /\!e~ t2s!, ~B3!

h0~ t,s!52„n~0!~s!11…e2~ i /\!*s
t dt8~e2 iJ !

52„n~0!~s!11…S 112n~0!~ t !

112n~0!~s!
D 1/2

3e2~ i /\!e~ t2s!, ~B4!

with the matrix structure of Eq.~16!. Equation~B2! can be
solved forn(0) as

n~0!@ t;J#5$~ 1
2 1n~0!~ t I!!e2~2/\!* t I

t dsJ~s!2 1
2 %. ~B5!

The correction to Eq.~B5! appears from the same diagra
as Fig. 1~b!, but with the above derived propagator. Then t
result is

nk@ t,J#5nk
~0!~ t !1S l

\
D 2

(
q,k8

3E
t I

t

dt8
112nk

~0!~ t !

112nk
~0!~ t8!

E
t I

t8
ds8H P̃k,q,k8~ t8!

P̃k,q,k8~s8!
J 1/2

3cos$vk,q,k8~ t82s8!%Ñk,q,k8
~2!

~s8!, ~B6!
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where

P̃k,q,k8~ t !5~112nk
~0!!~112nk82k

~0!
!

3~112nq8
~0!

!~112nk82q8
~0!

!~ t !. ~B7!

Applying the inversion formulas, the correction to Eq.~B2!
is obtained, and the sourceJ is expressed byn as

Jk~ t !52
\

2
] t ln„112nk~ t !…

1
l2

\„112nk~ t !… (q,k8
E

t I

t

dsH Pk,q,k8~ t !

Pk,q,k8~s!J 1/2

3cos$vk,q,k8~ t2s!%Nk,q,k8
~2!

~s!, ~B8!

whereP is defined from Eq.~B7! by replacingn(0)’s with
n’s. Then removing the source in Eq.~B8!, and rearranging
it for ] tnk , the EOM is obtained as

\] tnk5
l2

\ (
q,k8

E
t I

t

dsH Pk,q,k8~ t !

Pk,q,k8~s!J 1/2

3cos$vk,q,k8~ t2s!%Nk,q,k8
~2!

~s!. ~B9!

Comparing Eq.~B9! with the QKE obtained in Sec. III C
we see that they differ by the factor$P(t)/P(s)%1/2. The
adiabatic expansion of Eq.~B9!, however, leads to the ordi
s

u
,

-

ep
nary Boltzmann equation. As in Eq.~38!, the integration
over s in Eq. ~B9! is approximated by

E
2`

t

dscos$v~ t2s!%
N~2!~s!

P1/2~s!

5pd~v!
N~2!~ t !

P1/2~ t !
1

`

v2 ] t

N~2!~ t !

P1/2~ t !
1¯ . ~B10!

The factor 1/P1/2(t) in the first term on the right-hand sid
cancels withP1/2(t) in Eq. ~B9!, and the terms including the
time derivative can be neglected similarly as in Sec. III
Thus a Boltzmann equation identical to Eq.~39! is obtained
on a long-time scale.

As pointed out in Sec. II B, it is not surprising tha
the resultant expressions of the QKE presented here
the one in Sec. III C are different. It seems that the pro
of the form of Eq.~20! is more suited for deriving a kinetic
equation, since, in addition to the calculational simplici
it guarantees the conservation of total energy at least
to the third order of the interaction, as shown in Sec. III
Unlike in Sec. III E, the time derivatives of the kineti
and interaction energies do not completely cancel each o
if we use QKE ~B9!. Of course the nonzero contributio
to the time derivative of the total energy is of higher order
l; this is not a serious shortcoming, but it will be useful
the time derivative of the total energy precisely cancels or
by order.
n.
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